sequence A
60885,59962,59115,60009,59892,58060,58346,59226,59151,58853,
59613,60206,60686,62451,64092,64339,63607,60895,59136,59570,
59026,59065,58136,59123,56672,57198,56634,54030,54509,54873,
56595,56510,58189,57875,60231,60149,58350,58239,60408,62079,
63815,62863,63117.63927,63053,64203,63401,65314,66023,65752,
64453,63791,61467,61321,61005,61941,61883,63461,62690,62306,
60828,60617,62568,62800,64109,65562,67010,67266,67696,68351,
68219,68995,67454,67154,67330,67687,66860,67071,67659,71002,
72243,72264,69495,69557,68546,68775,68682,74793,74792,76043,
76598,79094,80689,88495,86673,90011,87758,91368,90492,90611,
91868,92592,97236,98938,98890,98369,98175,94655,92683,95535,
96258,97106,96364,96436,96149,96533,102534,97949,99301,99571,
99481,96950,97538,100698,99944,101600,102107,104970,106673,103511,
101269,96663,98540,96123,95503,94493,98231,98324,96118,94466,
94970,93342,92468,93568,95402,96687,98097,98346,99628,101750,
96492,94426,93944,94331,94507,94136,94893,97010,99363,101352,
102942,104984,102222,101286,105700,102438,105111,104298,105080,100315,
103005,102218,105322,104281,102487,100267,94215,99023,98187,92840,
97337,96211,97051,97092,98447,95866,96671,96724,97615,97600,
96245,95594,95259,96930,98368,96498,96242,95745,92025,88381,
85808,79968,85603,85903,93236,84226,87127,92767,88186,86257,
85999,82623,79780,81758,81254,81934,84484,84389,83546,82980,
82953,85679,84635,84336,84090,86823,86499,87341,87530,86149,
84021,83128,81826,83051,84564,83584,82698,83641,83449,76934,
80298,76348,81925,80849,83231,84550,84885,85471,83567,84158,
84677,85019,85188,87358,88088,93619,92781,93092,94579,94073,
94049,94392,95089,94911,96958.96555,95790,94414,94550,96568,
98982,102768,103170,104157,104096,102730,103734,102919,103943,103659,
103381,102997,106217,107380,111479,110785,108541,108389,109903,108971,
109004,107612,106132,103839,104700,104723,105210,105490,105232,102837,
104911,105672,105525,109564,109598,107765,104491,105424,105606,106345,
107363,105475,105679,104272,103423,102639,101211,104885,106256,107893,
107577,107249,107302,108365,106924,107380,108835,109025,108208,108029,
109161,108012,108572,111169,116909,117700,117925,121407,117475,117604.
118519,120515,118237,.118023,118425,116730,118982,118070,116061,117552,
118248,119231,118498,118008,118510,115691,113994,112440,114377,114344,
113428,114349,116797,116447,118468,122047,119109,119358,123103,118970,
117912,118154,115550,115347,113608,113815,112745,118865,118664,112758,
110100,111595,112954,111482,108449,108808,107398,110285,111042,111046,
111466,110921,110679,110963,112057,111550,114472,115402,115780,115812,
116087,115532,116383,117613
zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
new sequence
60886.59026,63815,60828,72243,91868,99481,94970,102942,97337,
85808,82953,80298,94049,103381,104911,107577,118519,113428,110100,
116087,
59962.59065,62863,60617,72264,92592,96950,93342,104984,96211,
79968,85679,76348,94392,102997,105672,107249,120515,114349,111595,
115532,
59115.58136,63117,62568,69495,97236,97538,92468,102222,97051,
85603,84635,81925,95089,106217,105525,107302,,118237,116797,112954,
116383,
60009.59123,63927,62800,69557,98938,100698,93568,101286,97092,
85903,84336,80849,94911,107380,109564,108365,108023,116447,111482,
117613,
59892.56672,63053,64109,68546,98890,99944,95402,105700,98447,
93236,84090,83231,96958,111479,109598,106924,118425,118468,108449,
58060.57198,64203,65562,68775,98369,101600,96687,102438,95866,
84226,86823,84550,96555,110785,107765,107380,116730,122047,108808,
58346.56634,63401,67010,68682,98175,102107,98097,105111,96671,
87127,86499,84885,95790,108541,104491,108835,118982,119109,107398,
59226.54030,65314,67266,74793,94655,104970,98346,104298,96724,
92767,87341,85471,94414,108389,105424,109025,118070,119358,110285,
59151,54509,66023,67696,74792,92683,106673,99628,105080,97615,
88186,87530,83567,94550,109903,105606,108208,116061,123103,111042,
58853.54873,65752,68351,76043,95535,103511,101750,100315,97600,
86257,86149,84158,96568,108971,106345,108029,117552,118970,111046,
59613.56595,64453,68219,76598,96258,101269,96492.103005,96245,
85999,84021,84677,98982,109004,107363,109161,118248,117912,111466,
60206.56510,63791,68995,79094,97106,96663,94426,102218,95594,
82623,83128,85019,102768,107612,105475,108012,119231,118154,110921,
60686.58189,61467,67454,80689,96364,98540,93944,105322,95259,
79780,81826,85188,103170,106132,105679,108572,118498,115550,110679,
62451.57875,61321,67154,88495,96436,96123,94331,104281,96930,
81758,83051,87358,104157,103839,104272,111169,118008,115347,110963,
64092.60231,61005,67330,86673,96149,95503,94507,102487,98368,
81254,84564,88088,104096,104700,103423,116909,118510,113608,112057,
64339.60149,61941,67687,90011,96533,94493,94136,100267,96498,
81934,83584,93619,102730,104723,102639,117700,115691,113815,111550,
63607.58350,61883,66860,87758,102534,98231,94893,94215,96242,
84484,82698,92781,103734,105210,101211,117925,113994,112745,114472,
60895.58239,63461,67071,91368,97949,98324,97010,99023,95745,
84389,83641,93092,102919,105490,104885,121407,112440,118865,115402,
59136.60408,62690,67659,90492,99301,96118,99363,98187,92025,
83546,83449,94579,103943,105232,106256,117475,114377,118664,115780,
59570.62079,62306,71002,90611,99571,94466,101352,92840,88381,
82980,76934,94073,103659,102837,107893,117604,114344,112758,115812,
zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
sequence B
60650,58597,57327,60190,65363,65887,67870,61020,58577,60009,
59151,62451,59136,59123,54509,57875,60408,63927,66023,61321,
62690,62800,67696,67154,67659,69557,74792,88495,90492,98938,
92683,96436,99301,100698,106673,96123,96118,93568,99628,94331,
99363,101286,105080,104281,98187,97092,97615,96930,92025,85903,
88186,81758,83546,84336,87530,83051,83449,80849,83567,87358,
94579,94911,94550,104157,103943,107380,109903,103839,105232,109564,
105606,104272,106256,108365,108208,111169,117475,108023,116061,118007,
114377,116447,123103,115347,118664,111482,111042,110963,115780,117613,
61777,56178,58093,62802,66940,65180,66305,59260,60976,59892,
58853,64092,59570,56672,54873,60231,62079,63053,65752,61005,
62306,64109,68351,67330,71002,68546,76043,86673,90611,98890,
95535,96149,99571,99944,103511,95503,94466,95402,101750,94507,
101352,105700,100316,102487,92840,98447,97600,98368,88381,93236,
86257,81254,82980,84090,86149,84564,76934,83231,84158,88088,
94073,96958,96568,104096,103659,111479,108971,104700,102837,109598,
106345,103423,107893,106924,108029,116909,117604,118425,117552,118510,
114344,118468,118970,113608,112758,108449,111046,112057,115812,
62941,57354,57909,64422,67380,66910,65526,55002,60885,58060,
59613,64339,59026,57198,56595,60149,63815,64203,64453,61941,
60828,65562,68219,67687,72243,68775,76598,90011,91868,98369,
96258,96533,99481,101600,101269,94493,94970,96687,96492,94136,
102942,102438,103005,100267,97337,95866,96245,96498,85808,84226,
85999,81934,82953,86823,84021,83584,80298,84550,84677,93619,
94049,96555,98982,102730,103381,110785,109004,104723,104911,107765,
107363,102639,107577,107380,109161,117700,118519,116730,118248,115691,
113428,122047,117912,113815,110100,108808,111466,111550,116087,
62449,57063,57581,64708,67700,67971,64427,55282,59962,58346,
60206,63607,59065,56634,56510,58350,62863,63401,63791,61883,
60617,67010,68995,66860,72264,68682,79094,87758,92592,98175,
97106,102534,96950,102107,96663,98231,93342,98097,94426,94893,
104984,105111,102218,94215,96211,96671,95954,96242,79968,87127,
82623,84484,85679,86499,83128,82698,76348,84885,85019,92781,
94392,95790,102768,103734,102997,108541,107612,105210,105672,104491,
105475,101211,107249,108835,108012,117925,120515,118982,119231,113994,
114349,119109,118154,112745,111595,107398,110921,114472,115532,
60930,56265,58692,64101,66683,67866,63358,55872,59115,59226,
60686,60894,58136,54030,58189,58239,63117.65314,61467,63461,
62568,67266,67454,67071,69495,74793,80689,91368,97236,94655,
96364,97949,97538,104970,98540,98324,92468,98346,93944,97010,
102222,104298,105322,99023,97051,96724,95259,95745,85603,92767,
79780,84389,84635,87341,81826,83641,81925,85471,85188,93092,
95089,94414,103170,102919,106217,108389,106132,105490,105525,105424,
105679,104885,107302,109025,108572,121407,118237,118070,118498,112440,
116797,119358,,115560,118865,112954,110285,110679,115402,116383,
zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
chatgpt math:
Here is a sequence of numbers []. Use a fourth degree polynomial regression to predict the next number in the sequence.
It is ok to use negative exponential terms. negative coefficients. or negative intercept terms, or exponential terms, coefficients, or intercept terms, that are not perfect integers, and are things like fractions, or square roots or cube roots, if it will make more accurate predictions. Explore whether including additional exponential terms (non-integer powers or decaying terms) improves the model's accuracy. What is the coefficient of determination score for this model? Don't show me the process. Just do the calculations and make the prediction. Don't show me the process. Just do the calculations and make the prediction.
Do not use an exponential decay term to improve fit and predictive accuracy.
Now
try the random Forest regression model, using the same sequence. What is the predicted next number? What is the coefficient of determination score for this model? Don't show me the process. Just do the calculations and make the prediction.
Here is a sequence of numbers []. Use the random Forest regression model, to predict the next number. What is the coefficient of determination score for this model? Don't show me the process. Just do the calculations and make the prediction.
-----------------------------------------------------------------------------------------------------------------------
NEW LETTERS
-,-,-,-,P,P,P,
P,E,E,F,A,B,G,
E,G,H,F,G,H,G,
E,H,E,E,E,G,G,
list for Monday's 9-15 calculations
E,H,E,E,E,H,P,
E,H,E,H,P,G,G,
O,P,G,I,P,P,K,
O,L,F,C,A,P,I,
A,L,J,E,P,P,N,
P,M,P,N,P,E,D,
L,L,I,M,P,L,I,
L,I,I,D,A,B,L,
I,G,F,E,A,A,H,
H,G,E,E,
TO PREDICT THE NEXT LETTER (for today)
ask Grok
Try to find a pattern in this sequence of letters [], and predict the next letter (for today). Give me the two most likely candidates for the next letter (for today). These letters are arranged in the form of weeks. The first letter in the row is for Sunday, and the next letter is for Monday, and the next letter is for Tuesday, and the next letter is for Wednesday, and the next letter is for Thursday, and the next letter is for Friday, and the last letter in the row is for Saturday. The first row only has letters for Thursday, Friday, and Saturday. It is permissible to use the day of the week to make a prediction for today's letter.
to predict the next letter and number (for today)
Based on the current number of [] for today,
and the sequence of prior letters [],
and the sequence of prior numbers [],
where each prior number is linked to each prior letter,
what do you predict will be the final letter and linked final number for today, when the day is finished? The number needs to be either 5 or 6 digits long, not 1 or 2 digits long. Give me the two most likely candidates for the final letter and final number for today.
zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
TO PREDICT THE NEXT NUMBER
Thank-you for predicting the next letter for today.
Now,
here are the numbers linked to the above sequence of letters [].
can you predict THE NEXT NUMBER for today in the sequence? Give me the two most likely candidates for the next number for today in the sequence.
-,-,-,-,104272,103423,102639,
101211,104885,106256,107893,107577,107249,107302,
108365,106924,107380,108835,109025,108208,108029,
109161,108012,108572,111169,116909,117700,117925,
list for Monday's 9-15 calculations
121407,117475,117604,118519,120515,118237,118023,
118425,116730,118982,118070,116061,117552,118248,
119231,118498,118008,118510,115691,113994,112440,
114377,114344,113428,114349,116797,116447,118468,
122047,119109,119358,123103,118970,117912,118154,
115550,115347,113608,113815,112745,118865,118664,
112758,110100,111595,112954,111482,108449,108808,
107398,110285,111042,111046,111466,110921,110679,
110963,112057,111550,114472,115402,115780,115812,
116087,115532,116383,117613,
NEXT
old version
NOW
assuming that [] and [] are the most accurate predictions for the next letter and number (today's letter and number) and (which corresponds to today), can you predict the next four additional letters and numbers (starting with tomorrow and then the next three days after tomorrow)?
new version #1
Now,
given that yesterday's letter was [], and yesterday's number was [], and assuming that [] is the most accurate prediction for the number for today, can you predict the next four additional numbers (starting with tomorrow and then the next three days after tomorrow)?
new version #2
use Grok not perplexity
For the following sequence of days, each day has a letter [] and a number []. Now,
given that yesterday's letter was [], and yesterday's number was [], and assuming that [] is the most accurate prediction for the number for today, can you predict the next four additional numbers (starting with tomorrow and then the next three days after tomorrow)?
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
For the following sequence of days, each day has a letter [] and a number [].
For the day labelled as [], what is the average percent change one day ahead, 2 days ahead, 3 days ahead, 4 days ahead, and 5 days ahead?
For the following sequence of days, each day has a letter [] and a number [].
For a sequence of two days, with the two days labelled as [], what is the average percent change one day ahead, 2 days ahead, 3 days ahead, 4 days ahead, and 5 days ahead?
STOP
zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
Here is a sequence of numbers []. Now take the formula for ARIMA and the formula for neural networks and combine them together in a way to form a brand new and different hybrid mathematical formula, and then use that new formula to make a prediction of the next number in the sequence. I will leave it up to you to decide exactly how to combine the two formulas, as long as the final new formula is able to make an accurate prediction. Also, you don't need to show me the program. I don't want to have to deal with it. I just need to see the final number predicted. What is the coefficient of determination score for this combined hybrid model? What is the coefficient of determination score for the arima model alone and the neural network model alone? Don't show me the process. Just do the calculations and make the prediction.
Now, with the same sequence of numbers, use a more sophisticated approach that might involve techniques like:
Using the residuals from the ARIMA model as input to the neural network.
Employing ensemble methods (e.g., bagging, boosting) to combine multiple neural network models.
Implementing more advanced neural network architectures (e.g., recurrent neural networks (RNNs), long short-term memory (LSTM) networks).
zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
Here is a sequence of numbers []. Use the Random Forest regression model to predict the next number in the sequence. What is the coefficient of determination score for this model? Don't show me the process. Just do the calculations and make the prediction.
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
Feature Importance Analysis (to see which features influence predictions the most).
Hyperparameter Tuning (to further optimize the model).
Other Ensemble Methods (like Gradient Boosting or XGBoost).
Here is a sequence of numbers []. Now take the formula for third degree polynomial regression and the formula for linear regression and combine them in a way to form a brand new and different hybrid mathematical formula, and then use that new formula to make a predictiion of the next number in the sequence. I will leave it up to you to decide exactly how to combine the two formulas, as long as the final new formula is able to make an accurate prediction.Also, you don't need to show me the program. I don't want to have to deal with it. I just need to see the final number predicted.
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
Here is a sequence of numbers []. Use cycle analysis to predict the next high number and the next low number in the sequence.
Here is a sequence of numbers []. Use a weighted moving average by adjusting the weights based on domain knowledge about the data and also analyzing the sequence for any cyclical patterns to predict the next number in the sequence. It is ok to use weights that are negative.
zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
(use 10 for next day and 18 for 4 days ahead) (use 4 data points and 4 weights)
(use 12 for next day and 20 for 4 days ahead) (use 5 data points and 5 weights)
The full sequence is
The last 4 data points are
The number of weights in the formula is 4
Now use the full sequence to find both the optimal weights and the intercept term that will be used in the complete full prediction formula.
And then, use the last 4 data points, and the weights, and the intercept term, to calculate the predicted next value.
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
in other words:
After a sequence of numbers is entered, you will tell me how many numbers are in the sequence. Then you will add one number to the numbers in the sequence. This is the (sequence + 1) number. Then you will use the (sequence + 1) number, and you will perform a least squares regression, and then predict the next number in the sequence, then a fourth degree polynomial regression, and then predict the (next +1) number in the sequence, and then an exponential regression, and then predict the next number in the sequence, then use a logarithm regression formula and a power regression formula, and then predict the next number in the sequence for each of these other 2 formulas. Tell me what each of the 5 predicted numbers are, then take all 5 of the predicted numbers and find the average of them.
zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
No comments:
Post a Comment